MATHS STD. IX

General instructions for students: Whatever be the notes provided, everything must be copied in the Maths copy and then do the HOMEWORK in the same copy.

CHAPTER 2. COMPOUND INTEREST (continued)

DEPRECIATION

Rate of depreciation - The decrease of the value per year (or unit of time) is called rate of depreciation.

If the rate of depreciation is constant, then

$$V = V_0 (1 - \frac{r}{100})^n$$

Where,

r% = rate of depreciation per year, n = no. of years

 $V_0 = present \ value,$ $V = value \ after \ n \ years.$

For Example:

 Dinesh purchased a scooter for Rs. 24000. The value of the scooter depreciating at rate of 5 % per annum. Calculate its value after 3 years.

Here, present value of a scooter (V_0) = Rs. 24000, rate of depreciation (r) = 5 % p. a.

$$no.of\ years(n) = 3\ years$$

(Value of a scooter after 3 years)
$$V=V_0(1-\frac{r}{100})^n$$

$$Or \qquad V=24000(1-\frac{5}{100})^3$$

$$Or \qquad V=24000\left(\frac{19}{20}\right)^3$$

$$Or \qquad V=Rs.\,20577 \quad Ans.$$

 The value of a car depreciates by 12.5 % every year. By what percent will the value of the car decrease after 3 years?

Let the present value of the car be Rs. V_0

Value of the car after 3 years
$$=V_0(1-rac{12.5}{100})^3$$

 $=V_0\left(rac{7}{8}
ight)^3$

Decrease in the value of car
$$=V_0-V_0\left(rac{7}{8}
ight)^3$$

$$= V_0 \left[1 - \left(\frac{7}{8} \right)^3 \right]$$

$$= Rs. \ \frac{169}{512} \ V_0$$

$$Decrease percentage = \left(\frac{decrease}{present \, value} \ X \ 100 \right) \% = \left(\frac{\frac{169}{512} V_0}{V_0} \ X \ 100 \right) \%$$

$$= \left(\frac{169}{512} \ X \ 100 \right) \%$$

$$= 33 \frac{1}{128} \ \% \ \textit{Ans}.$$

If V_0 is the value n years ago and V is the present value, then

$$V = V_0 (1 - \frac{r}{100})^n$$

For Example:

The value of a machine, purchased 2 years ago, depreciates at the annual rate of 10 %. If its present value is Rs. 97200, find its value when it was purchased.

Here, present value of a machine (V) = Rs. 97200, rate of depreciation (r) = 10 % p. a.

$$no.of\ years(n) = 2\ years$$

(Value of a machine 2years ago)

$$V = V_0 (1 - \frac{r}{100})^n$$

$$\begin{aligned} Or & 97200 = V_0 (1 - \frac{10}{100})^2 \\ Or & 97200 = V_0 (\frac{9}{10})^2 \\ Or & V_0 = \frac{97200 \times 10 \times 10}{9 \times 9} \end{aligned}$$

$$Or$$
 97200 = $V_0(\frac{9}{10})^2$

$$V_0 = \frac{97200 \times 10 \times 10}{9 \times 9}$$

$$Or V_0 = Rs. 120000 Ans.$$

ASSIGNMENT - IV

EXERCISE - 2.3

QUESTION NUMBERS: 4, 7, 8, 10 and 14

CHAPTER TEST: 10, 11 and 12

3. EXPANSIONS

please memorize all algebraic identities

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a+b)(a-b) = a^2 - b^2$$

4.
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

5.
$$(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)$$

6.
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b) = a^3 + b^3 + 3a^2b + 3ab^2$$

7.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b) = a^3 - b^3 - 3a^2b + 3ab^2$$

8.
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

9.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

10.
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

11.
$$(x+a)(x+b)(x+c) = x^3 + (a+b+c)x^2 + (ab+bc+ca)x + abc$$

12. If
$$a+b+c=0$$
, then $a^3+b^3+c^3=3abc$
